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We implement a quantum error correction algorithm for bit-flip errors on the topological toric
code using deep reinforcement learning. An action-value Q-function encodes the discounted value
of moving a defect to a neighboring site on the square grid (the action) depending on the full set of
defects on the torus (the syndrome or state). The Q-function is represented by a deep convolutional
neural network. Using the translational invariance on the torus allows for viewing each defect from a
central perspective which significantly simplifies the state space representation independently of the
number of defect pairs. The training is done using experience replay, where data from the algorithm
being played out is stored and used for batch upgrade of the Q-network. We find performance which
is close to that achieved by the Minimum Weight Perfect Matching algorithm for code distances up
to d = 7, which shows that the deep Q-network is highly versatile in dealing with varying numbers
of syndrome defects.

I. INTRODUCTION

Much of the spectacular advances in machine learning
using artificial neural networks has been in the domain
of supervised learning were deep convolutional networks
excel at categorizing objects when trained with big anno-
tated data sets[1–3]. A different but also more challeng-
ing type of problem is when there is no a priori solution
key, but rather a dynamic environment through which we
want to learn to navigate for an optimal outcome. For
these types of problems reinforcement learning (RL) [4]
combined with deep learning has had great success re-
cently when applied to problems such as computer and
board games[5–8].

In physics the use of machine learning has seen a great
deal of interest lately[9–13]. The most natural type of
application of neural networks is in the form of supervised
learning where the deep network can capture correlations
or subtle information in real or artificial data. The use
of deep reinforcement learning may be less obvious in
general as the type of topics addressed by RL typically
involve some sort of ”intelligent” best strategy search,
contrary to the deterministic or statistical models used
in physics.

In this paper we study a type of problem where we are
looking for an intelligent solution, namely a best strategy
for error correction of a topological quantum code; the
basic building block of a quantum computer. In the field
of quantum computing, physics merge with computer sci-
ence and smart algorithms are needed for error correction
of fragile quantum bits[14, 15]. To use machine learning,
and in particular reinforcement learning, has been sug-
gested recently as a tool for quantum error correction
and quantum control[16–18]. There are also very inter-
esting prospects of utilizing the natural parallelization of
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quantum computers for machine learning itself[19], but
we will be dealing with the more mundane task of putting
deep learning at the service of quantum computing.

We consider Kitaev’s surface code on a torus which
is a stabilizer formalism that projects a large number of
physical qubits into smaller number of entangled logical
qubits[15, 20, 21]. Error (phase or bit flips) in the phys-
ical qubits are only manifested by the syndrome which
indicates violated stabilizers but does not uniquely iden-
tify the physical errors. On a lattice of 2d2 physical cubits
the logical qubits are separated by the code distance d
meaning that chains of errors of length d or more may
correspond to logical operations. On the torus these cor-
respond to topologically non-trivial loops. The challenge
is thus to find an algorithm for the error correction that
can suggest which physical qubits to operate on without
accidentally generating non-trivial loops. The problem
is well suited for RL, similar in spirit to a board game,
where the agent moves the defects of the syndrome, corre-
sponding to suggesting operations on the physical cubits,
and with reward given for successful error correction. It
is a challenging problem given the very large state space
that corresponds to a syndrome containing many defects,
and given the fact that the success or failure cannot be
assessed until the end of a complete episode.

In recent work [22] an application of reinforcement
learning to error correction of the surface code was im-
plemented. That work focuses on the important issue
of error generated in the readout of the syndrome and
used an auxiliary ”referee decoder” to assist the per-
formance of the RL decooder. In the present work we
consider the simpler but conceptually more direct prob-
lem of error correction on a perfect syndrome, not cor-
rupted by error. The problem can be addressed by the
Minimum Weight Perfect Matching (MWPM) or Blos-
som algorithm[23, 24] and has also been the topic of
many studies using methods such as renormalization
group[25], cellular automata[26, 27], and a number of
neural network based decoders typically using supervised
learning[17, 28–33]. We find that by setting up a reward
scheme that encourage the elimination of the syndrome in

mailto:phiandr@student.chalmers.se
mailto:gusjohjodt@student.gu.se
mailto:simlilj@student.chalmers.se
mailto:mats.granath@physics.gu.se


2

as few operations as possible within the deep Q-learning
(or deep Q-network, DQN)[6, 7] formalism we are able
to arrive at an algorithm that is comparable in perfor-
mance to MWPM. Although the present algorithm does
not outperform the latter we expect that it has the po-
tential to be more versatile when addressing correlated
noise, measurement noise, or the surface code for varying
geometries. Compared to the MWPM algorithm the RL
algorithm also has the advantage that it provides step
by step correction, meaning that it can readily adjust to
the introduction of additional errors during the correc-
tion epsiode without recalculating the full error correct-
ing strings of bit (or phase) flips.

The outline of the paper is the following. In the Back-
ground section we give a brief but self-contained summary
of the main features of the toric code including the basic
structure of the error correction and a similar summary
of one-step Q-learning and deep Q-learning. (The reader
familiar with these topics can readily skip ahead.) The
following section, RL Algorithm, describes the formula-
tion and training of the error correcting agent. In the Re-
sults section we shows that we have trained the RL agent
up to system sizes of 7 × 7 with performance which is
very close to the MWPM algorithm. We finally conclude
and append details of the the neural network architecture
and the RL and network learning hyperparameters.

II. BACKGROUND

II.1. Toric code

Here we recapitulate the main aspects of the topolog-
ical toric code in an informal manner and from the per-
spective of an interacting quantum spin-Hamiltonian.[20,
21, 34]

The basic construction is a square lattice with a spin-
1
2 degree of freedom on every bond, the physical qubits,
and with periodic boundary conditions making up the
torus, see Figure 1. The model is given in terms of a
Hamiltonian

H = −
∑
α

P̂α −
∑
ν

V̂ν , (1)

where α runs over all plaquettes and ν over all vertices
(sites). The stabilizers are the plaquette operators P̂α =∏
i∈α σ

z
i and the vertex operators V̂ν =

∏
i∈ν σ

x
i , where

σz and σx are the Pauli matrices. (Where, in the σz ba-
sis, σz| ↑ / ↓〉 = ±1| ↑ / ↓〉 and σx| ↑ / ↓〉 = | ↓ / ↑〉.)
The stabilizers commute with each other and the Hamil-
tonian thus block diagonalizing the latter. On a d×d lat-
tice of plaquettes d2 − 1 plaquette operators are linearly
independent (e.g. it is not possible to have a single −1
eigenvalue with all other +1) and correspondingly for the
vertex operators. With 2d2 physical qubits and 2d2 − 2

stabilizers the size of each block is 22d
2

/22d
2−2 = 4, cor-

responding in particular to a ground state which is 4-fold
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FIG. 1. A d = 5 toric code lattice with rings indicating
the physical cubits and grey showing the periodic boundary
conditions. a) Plaquette (green) and vertex (red) operators,
as products of σz and σx Pauli matrices. b) A single vertex
operator can be represented as a loop flipping the cubits that
the it crosses. c) Two neighboring vertex operators make up
a larger loop. d) The logical operators X1/2 (red) and Z1/2

(green) consist of loops winding the torus and are not repre-
sentable in terms of products of vertex or plaquette operators.

degenerate. These are the states that will serve as the
logical qubits. (More precisely, given the 4-fold degener-
acy it is a qudit or base-4 qubit.)

To derive the ground state consider first the plaquette
operator in the σz-basis; clearly a ground state must have
an even number of each spin-up and spin-down on every
plaquette to be a +1 eigenstate of each plaquette opera-
tor. Let’s consider the state with all spin-up | ↑↑↑ · · · 〉;
acting with a vertex operator on this flips all the spins
around the vertex (see Fig. 1b) giving a state still in
ground state sector of the plaquette operators as an even
number of spins are flipped on the plaquettes surround-
ing the vertex. (As is also clear from the fact that all the
stabilizer operators commute.) The +1 eigenstate of that
particular vertex operator is thus the symmetric superpo-
sition of the two states. A convenient way to express the
operation of one or several adjacent vertex operators is
in turns of loop traversing the flipped spins. Such loops
(fig. 1b-c) generated from products of vertex operators
will always be topologically trivial loops on the surface
of the torus since they are just constructed by merging
the local loop corresponding to a single vertex operator.
Successively acting with vertex operators on the states
generated from the original | ↑↑↑ · · · 〉 we realize that
the ground state is simply the symmetric superposition
of all states that are generated from this by acting with
(trivial) loops |GS0〉 =

∑
i∈all trivial loops loopi| ↑↑↑ · · · 〉.

To generate the other ground states we consider
the operators X1 and X2 (Fig. 1d) which are prod-
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ucts of σx corresponding to the two non-trivial loops
that wind the torus. (Deformations of these loops
just correspond to multiplication by trivial loops and is
thus inconsequential.) Correspondingly there are non-
trivial loops of σz operators Z1 and Z2. The four
ground states are thus the topologically distinct states
{|GS0〉, X1|GS0〉, X2|GS0〉, X2X1|GS0〉} distinguished by
their eigenvalues of Z1 and Z2 being ±1. For a torus with
d×d plaquettes there are 2d2 physical qubits and the code
distance, i.e. minimum length of any logical operator (Xi

or Zi), is d.

II.1.1. Error correction

Errors in the physical qubits will take the state out of
the ground state sector and thereby mask the encoded
state. The task of the error correction procedure is to
move the system back to the ground state sector without
inadvertently performing a logical operation to change
the logical qubit state. A σx error on a physical qubit
corresponds to a bit-flip error. On the surface code this
gives rise to a pair of defects (a.k.a. quasiparticles or
anyons) in the form of neighboring plaquettes with −1
eigenvalues of the plaquette stabilizers. Similarly a σz

error corresponds to a phase-flip error which gives rise
to a pair of neighboring −1 defects on two vertices. A
σy = iσxσz simultaneously creates both types of defects.
The most natural error process is to assume that x, y, z
errors occur with equal probability, so called depolariz-
ing or correlated noise. This however requires to treat
correlations between x and z errors and the simpler un-
correlated noise model is often used, which is what we will
consider in this work. Here x and z errors occur inde-
pendently with probability p whereas y errors occur with
probability p2. Correcting independent x and z errors is
completely equivalent (with defects either on plaquettes
or on vertices) and it is therefore sufficient to formulate
an error correcting algorithm for one type of error. In
this work we will consider bit-flip errors and correspond-
ing plaquette defects. Regardless of noise model and type
of error an important aspect of the error correction of a
stabilizer formalism is that the microscopic entanglement
of the logical cubit states or its excitations does not have
to be considered explicitly as errors act equivalently on
all pure states that belong to the same stabilizer sector.

A crucial aspect of quantum error correction is that
the actual bit-flip errors cannot be measured without col-
lapsing the state into a partial basis and destroying the
qubit. What can be measured without destroying the
logical qubit are the stabilizers, i.e. for bit-flip error the
±1 eigenvalue of the plaquette operators. The complete
set of incorrect (−1) plaquettes makes up the syndrome
of the state. The complete set of bit-flip errors will be
produce a unique syndrome as the end-points of strings of
bit-flip errors. The converse however is not true, which is
what makes the task challenging. In order to do the error
correction we need to suggest a number of physical bits
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FIG. 2. Bit-flip errors (red ’X’) and possible error correc-
tion bit-flips (blue ’X’). (a) Two neighboring errors and the
corresponding error chain (red line) and syndrome (red dots).
(b) Visualized in terms of the syndrome with error chain and
two possible correction chains (blue) as expressed explicitly in
(c) and (d). The error chain plus the correction chain in (d)
constitutes a non-trivial loop and a logical bit-flip operation
(as in Figure 1d), thus a failed error correction, in contrast to
the trivial loop in (c).

that should be flipped in order to achieve the pair-wise
annihilation of the defects of the syndrome. Consider a
single pair of defects which have been created by a par-
ticular chain of errors. (See Figure 2.) The error correc-
tion needs to suggest a correction string connecting the
two defects. If this is done properly the correction string
and the error string form a trivial loop, thus returning
the qubit to the original state. If instead the correction
string and the error string together make up a non-trivial
loop that winds the torus we have eliminated the error
syndrome but changed the state of qubit (corresponding
to a logical bit-flip), thus failed the task of correcting the
error.

For the uncorrelated noise model it can be shown,
by mapping to the random bond Ising model, that for
d→∞ there is a critical threshold pc ≈ 0.11 below which
the most probable correction chains to complement the
error chain will with certainty form trivial loops, while for
p > pc non-trivial loops occur with finite probability.[21]
For a finite system, the sharp transition is replaced by
a cross-over, as seen in Figure 7, where for increasing d
the fraction of successful error correction evolves progres-
sively towards 1 for p < pc, and to 1/4 (thus completely
unpredictable) for p > pc.

For the uncorrelated noise model on the torus the most
likely set of error chains between pairs of defects which is
consistent with a given syndrome would be one that cor-
responds to the smallest number of total bit flips, i.e. the
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shortest total error chain length. Thus, a close to optimal
algorithm for error correction for this system is the Min-
imum Weight Perfect Matching (MWPM) algorithm[23].
(This algorithm is also near optimal for the problem
with syndrome errors as long as it is still uncorrelated
noise[21, 24].) The MWPM algorithm for the perfect syn-
drome corresponds to reducing a fully connected graph,
with an even number of nodes and with edges specified
by the inter-node distances, to the set of pairs of nodes
that minimize the total edge length. This algorithm can
be implemented efficiently[35] and we will use this as the
benchmark of our RL results. In fact, as we will see, the
RL algorithm that we formulate amounts to solving the
MWPM problem. In this sense the work presented in this
paper is to show the viability of the RL approach to this
problem with the aim for future generalizations to other
problems where MWPM is sub-optimal, such as the de-
polarizing noise model, or the corresponding Surface code
on systems without periodic boundary conditions.

II.2. Q-learning

Reinforcement learning and Q-learning is described in
detail for example the excellent book by Sutton and
Barto[4], and here we will only recapitulate in an infor-
mal way the main and for us most pertinent details.

Reinforcement learning is a method to solve the prob-
lem of finding an optimal policy of an agent acting in a
system where the actions of the agent causes transitions
between states of the system. The policy π(s, a) of an
agent describes (probabilistically perhaps) the action a
to be taken by the agent when the system is in state s. In
our case the state will correspond to a syndrome, and an
action to moving a defect one step. The optimal policy is
the one that gives the agent maximal return (cumulative
discounted reward) over the course of its interaction with
the system. Reward rt+1 is given when the system tran-
sitions from state st → st+1 such that the return starting
at time t is given by Rt = rt+1 + γrt+2 + γ2rt+3 + · · · .
Here γ ≤ 1 is the discounting factor that quantifies how
we want to value immediate versus subsequent reward.
As will be discussed in more detail, in the work presented
in this paper a constant reward r = −1 will be given for
each step taken, so that in practice the optimal policy
will be the one that minimizes the number of actions, ir-
respectively of the value of γ. (Although in practice, even
here the value of γ can be important for the convergence
of the training.)

One way to represent the cumulative reward depend-
ing on a set of actions and corresponding transitions is by
means of an action-value function, or Q-function. This
function Q(s, a) quantifies the expected return when in
state s taking the action a, and subsequently following
some policy π. In one-step Q-learning we quantify Q ac-

cording to Q(s, a) = r + γmaxa′ Q(s′, a′), with s
a−→ s′,

which corresponds to following the optimal policy ac-
cording to our current estimate of Q. In order to learn

the value of the Q-function for all states and actions we
should explore the full state-action space, with the pol-
icy given by taken action a according to maxaQ(s, a)
eventually guaranteed to converge to the optimal policy.
However, an unbiased exploration gets prohibitively ex-
pensive and it is therefore in general efficient to follow an
ε-greedy policy which with probability (1 − ε) takes the
optimal action based on our current estimate of Q(s, a)
but with probability ε takes a random action. From what
we have learned by this action we would update our es-
timate for Q according to

Q(s, a)← Q(s, a)+α[(r+γmax
a′

Q(s′, a′))−Q(s, a)] , (2)

where α < 1 is a learning rate. This procedure is then a
trade-off between using our current knowledge of the Q
function as a guide for the best move to avoid spending
extensive time on expensive moves but also exploring to
avoid missing out on rewarding parts of the state-action
space.

II.2.1. Deep Q-learning

For a large state-action space it is not possible to store
the complete action-value function. (Disregarding sym-
metries, for a d × d system with NS defects, the state

space has size
(
d2

NS

)
, ∼ 1013 for p ≈ 10% and d = 7.) In

deep Q-learning[7], the action-value function is instead
represented by a deep neural network with the input layer
corresponding to some representation of a state and the
output layer corresponding to the value of the possible
actions. The idea is that similarities in the value of dif-
ferent regions of the state-action space may be stored
in an efficient way by the deep network. Parametriz-
ing the Q-function by means of neural network we write
Q(s, a, θ), where θ represents the complete set of weights
and biases of the network. (We use a convolutional net-
work with ∼ 106 parameters for the d = 7 problem.) As
outlined in more detail in the following sections the lat-
ter can be trained using supervised learning based on a
scheme similar to one step Q-learning.

III. RL ALGORITHM

The decoder presented in this paper is a neu-
ral network-based agent optimized using reinforcement
learning to observe toric code syndromes and suggesting
recovery chains for them step by step. The agent makes
use of a deep convolutional neural network to approxi-
mate Q values of actions given a syndrome. We will refer
to this network as the Q network.

In a decoding session, a syndrome S corresponding to
the coordinates of NS defects ei (i = 1, ..., NS) is fed
to the algorithm as input. The syndrome is the state
of the system as visible to the agent. The syndrome at
any time step is that generated by accumulated actions
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of the agent on the syndrome given by the initial ran-
dom distribution of bit-flips. There is also a hidden state
corresponding to the joint set of initial and agent flipped
qubits. After the complete episode resulting in a termi-
nal state with an empty syndrome, an odd number of
non-trivial loops (in either X1 or X2) indicates a failed
error correction. In the algorithm used in this work how-
ever, the success/fail information does not play any ex-
plicit role in the training, except as external verification
of the performance of the agent. Instead reward r = −1
is given at every step until the terminal state regardless
of whether the error correcting string(s) gave rise to an
unwanted logical operation. Taking the fewest number
of steps to clear the syndrome is thus the explicit target
of the agent, corresponding to actuating the MWPM al-
gorithm. (An alternative formulation with different de-
pendence on γ would be to reward +1 at the terminal
step.)

It would seem very natural to base the RL reward
scheme on the success/failure information from the hid-
den state. However, we found it difficult to converge
to a good agent based on this, for the following reason:
given a particular starting syndrome, consistent with a
distribution of different error strings, most of these are
properly corrected by the MWPM algorithm whereas a
minority are not. As the syndrome is all that the agent
sees, it has no chance to learn to distinguish between
these two classes, thus trying to use it for training will
only obscure the signal. Nevertheless, for future more
advanced tasks, such as dealing with depolarizing noise,
and to aim for super-MWPM performance it will be nec-
essary to explore the use of the fail/success information
for the reward scheme despite the quite weak training
signal.

III.1. State-space formulation

Due to the periodic boundary conditions of the code,
the syndrome can be represented with an arbitrary pla-
quette as its center. Centering a defect ei, we define the
perspective, Pi, of that defect, consisting of the relative
positions of all other defects in the syndrome. The set
of all perspectives given a syndrome we define as an ob-
servation, O, as exemplified in Figure 3. (The syndrome,
observation and perspective all contain equivalent infor-
mation but represented differently.) The agent will be
given the option of moving any defect one plaquette in
any direction (left, right, up, or down), corresponding to
performing a bit flip on one of the physical qubits en-
closing the plaquette containing the defect. Clearly the
total number of available actions varies with the number
of defects, which is inconvenient if we want to represent
the Q-function in terms of a neural network. In order
for the Q network to have a constant-sized output re-
gardless of how many defects are present in the system,
each perspective in the observation is instead sent indi-
vidually to the Q network. Thus, Q(P, a, θ) represents
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FIG. 3. State formulation. The toric code syndrome, defines
an ”observation” that contains the centralized ”perspectives”
for each defect.

FIG. 4. Structure of the deep Q-network. The input layer is
a d × d matrix corresponding to the ”perspective” P , of one
defect of the syndrome. (Using translational symmetry on the
torus, any defect can be placed at the center.) The output
layer gives the action valueQ(P, a, θ) of moving the central de-
fect to any of the four neighboring plaquettes a = U,D,R,L,
given the current training state of network parameters θ. The
hidden layers consist of a convolutional layer (of which a 3×3
filter is indicated on the input layer) and several fully con-
nected layers. (For details, see Appendix.) Successively scan-
ning all defects using the same network gives the full action
value function of the syndrome.

the value of moving the central defect a = L,R,U,D,
given the positions of all other defects specified by the
perspective P , for network parameters θ. The network
with input and output is represented graphically in Fig-
ure 4. The full Q-function corresponding to a syndrome
is given by {Q(P, a, θ)}P∈O. When the Q value of each
action for each defect has been obtained, the choice of
action and defect is determined by a greedy policy. The
new syndrome is sent to the algorithm and the procedure
is repeated until no defects remain.

III.2. Training the neural network

Training of the decoder agent was done using the Deep
Q Network (DQN) algorithm [7]. This algorithm utilizes
the technique of experience replay in which the experi-
ence acquired by the agent is stored as transition tuples in
a memory buffer. When updating the Q network (given
by parameters θ), a batch of random samples is drawn
from this memory buffer. By taking random samples of
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experience, the temporal correlation of the data is min-
imized, resulting in a more stable training procedure of
the neural network. To further increase the stability of
the training, the DQN algorithm makes use of a target
Q network (with parameters θT ) to compute update tar-
gets. The target Q network is periodically synchronized
with the updated Q network.

Algorithm 1 Training the reinforcement learning agent
decoder
1: while syndrome defects remain do
2: Get observation O from syndrome . See figure 3
3: Calculate Q(P, a, θ) using Q-network for all perspec-

tives P ∈ O.
4: Choose which defect e to move with action a using
ε-greedy policy

5: P ← perspective of defect e
6: Perform action a on defect e
7: r ← reward from taking action a on defect e
8: O′ ← observation corresponding to new syndrome
9: Store transition tuple T = (P, a, r, O′) in memory

buffer
10: Draw a random sample of transition tuples
11: for each transition tuple Ti in sample do
12: Construct targets yi using target network θT and

reward ri according to Eqn. 3.
13: end for
14: Update Q-network parameters θ
15: Every n iterations, synchronize the target network

with network, setting θT = θ
16: end while

A training sequence begins with an acting stage, where
a syndrome is sent to the agent, which uses the Q network
Q to suggest a defect perspective, P , and an action, a. An
ε-greedy policy is used by the agent, meaning that it will
suggest the action with the highest Q-value with proba-
bility (1 − ε). Otherwise a random action is suggested.
The action is performed on the defect, e, corresponding
to P , resulting in a reward, r, and a new observation, O′,
derived from the resulting syndrome. The whole transi-
tion is stored as a tuple, T = (P, a, r, O′), in a memory
buffer. After this, the training sequence enters the learn-
ing stage using stochastic gradient descent. First, a ran-
dom sample of transitions, {Ti = (Pi, ai, ri, O

′
i)}Ni=1, of a

given batch size, N , is drawn with replacement from the
memory buffer. (Here the discrete C4 rotational sym-
metry of the problem is enforced by including all four
rotated versions of the same tuple.) The training target
value for the Q-network is given by

yi = ri + γ max
P ′∈O′

i;a
′
Q(P ′, a′, θT ) , (3)

where γ is the discount factor and where the more slowly
evolving target network parametrized by θT is used to
predict future cumulative award. After this, gradient de-
scent is used to minimize the discrepancy between the
targets of the sample and the Q network predictions for
it, upgrading the network parameters schematically ac-
cording to −∇θ

∑
i(yi − Q(Pi, ai, θ))

2 . A new training

Synchronize every n iterations

Create tuple
T = (P, a, r, O')

Memory buffer

Q network 
Q(θ)

Target network
Q(θT)

P a r

O'

Random sample
{𝑇𝑖}𝑖=1

𝑁

Construct
targets 

SGD

Learning stage

ri O'i

Pi ai

Syndrome

Choose action

New syndrome

Acting stage

FIG. 5. Flowchart of the training procedure. A learning
sequence consists of an acting stage followed by a learning
stage. (P, a, r) is (perspective,action,reward) corresponding
to what defect is acted on with what action and giving what
reward. O′ is the observation (see Fig. 3) corresponding to
the resulting syndrome. A pseudocode representation is given
in Algorithm 1. (SGD is Stochastic Gradient Descent.)

sequence is then started, and with some specified rate,
the weights of the target Q network are synchronized
with the Q network. A pseudocode description of the
procedure is presented in algorithm 1 and an illustration
of the different components and procedures of the train-
ing algorithm and how they relate to each other is found
in Figure 5.

IV. RESULT

Data sets with a fixed error rate of 10% were gener-
ated to train the agent to operate on a code of a specified
size. The syndromes in a data set is fed one at a time
to the agent, which operates on it until no errors remain.
The data sets also contain information about the physi-
cal qubit configuration (the hidden state) of the lattice,
which (as discussed in section III) is used to check the
success rate of the decoder. This is compared to the per-
formance of the MWPM decoder on the same syndromes
[35]. The initial training of the agent is illustrated in
Figure 6 for lattice size d× d, with d = 3, 5, 7.

The proficiency of the well converged agents are shown
in figure 7 and compared to the MWPM performance.
Given our specified reward scheme, which corresponds to
using as few operations as possible, we achieve near op-
timal results with a performance which is close to that
of the MWPM decoder. For larger system sizes d ≥ 9 we
were not successful at converging to close to MWPM per-
formance. We expect that this can be resolved by using
a larger neural network and parallelizing the exploration,
to be explored in future work.

As a demonstration of the operation of the trained
agent and the corresponding Q-network we present
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FIG. 6. Early training convergence of the Q network agent.
Success rate Ps versus number of iterations. One iteration
corresponds to annihilating all the defects of a single syn-
drome. (The very early below 1/4 success rate is an artifact
of using a max count for the number of error correcting steps
for the validation.)

FIG. 7. Error correction success rate Ps of the converged
agents versus bit-flip error rate p, for system size d = 3, 5, 7,
and compared to the corresponding results using MWPM.
(The MWPM decoder for d = 30 is included as a reference
for the approach to large d.)

in Figure 8 the action values Q(S, a) for two differ-
ent syndromes. (As discussed previously, Q(S, a) =
{Q(P, a, θ)}P∈O, where O is the observation, or set of
perspectives, corresponding to the syndrome S.) The size
of the arrows are proportional to the discounted return R
of moving a defect one initial step in the direction of the
arrow and then following the optimal policy. In Fig. 8a,
the values are written out explicitly. The best (equiva-
lent) moves have a return R = −3.57 which corresponds
well to the correct value R = −1−γ−γ2−γ3 = −3.62 for
following the optimal policy to annihilate the defects in
four steps, with reward r = −1 and discount rate γ = .95.
Figure 8b shows a seemingly challenging syndrome where
the fact that the best move does not correspond to anni-
hilating the two neighboring defects is correctly captured
by the Q-network.

One interesting aspect of the close to MWPM perfor-
mance of the fully trained agent is the ability of the Q-
network to suggest good actions independently of how
many defects are in the syndrome. A 7× 7 system with
p = 10% would start out with a syndrome with maybe

-3.57
-3.57

-3.57

-3.57

-5.02

-4.96

-5.20

-5.11

a b

FIG. 8. Action value function produced by the Q-network
for two different syndromes and code distance d = 7. The
magnitude of the arrows indicate the expected return from
taking a next step along the arrow and after that following
the optimal policy. The optimal policy for the next move
corresponds to the action with the biggest arrow(s). In (a)
the expected return is written out explicitly, where the best
moves are consistent with the constant reward of −1 per step
and discounting rate γ = 0.95 used in the training.

20 defects, which is successively pair-wise reduced down
to two and finally zero defects, all based on action-values
given by the same Q-network (θ). The network is thus
surprisingly versatile and capable, given the enormous
reduction of the number of adjustable parameters com-
pared to representing and training the full Q-value func-
tion as a list.

V. CONCLUSIONS

In conclusion, we have shown that reinforcement learn-
ing is a viable method for quantum error correction of the
toric code for moderate size systems using uncorrelated
bit-flip (or phase-flip) noise. By training an agent to find
the shortest paths for the error correction chains we are
able to achieve accuracy close to that using a Minimum
Weight Perfect Matching decoder. In order to accom-
plish this we used the deep Q-network (DQN) formalism
using a deep neural network to encode the action-value
function.[6, 7] The construction also made good use of
the translational invariance on the torus to be able to
efficiently reduce the state space representation. For fu-
ture work it will be interesting to see how the formalism
generalizes to more advanced problems that include de-
polarizing noise, syndrome noise, as well as surface codes
with boundaries. For such problems the training would
certainly be more challenging but probably within reach
using the machinery of deep Q-learning. The versatility
of the deep Q-network should perhaps not be surpris-
ing given its successful application to other challenging
problems, but it also gives good hope for using the DQN
approach for the noise models where the MWPM algo-
rithm is suboptimal.
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Appendix: Network architecture and training
parameters

The reinforcement learning agent makes use of a deep
convolutional neural network to approximate the Q val-
ues for the possible actions of each defect. The network
(see Fig. 4) consists of an input layer which is d × d
matrix corresponding to a perspective (binary input, 0
or 1, with 1 corresponding to a defect), and a convo-
lutional layer followed by several fully-connected layers
and an output layer consisting of four neurons, repre-
senting each of the four possible actions. All layers have
ReLU activation functions except the output layer which
has simple linear activation. The network architecture is
summarized in Table I and II. We also included explicitly
a count of the number of parameters (weights and biases)
to emphasize the huge reduction compared to tabulating

the Q-function. The latter requires of the order
(
d2

NS

)
entries, for Ns defects, where Ns will also vary as the
syndrome is reduced, with initially NS ∼ 2pd2 as each
isolated error creates a defect pair.

TABLE I. Network architecture d=5. FC=Fully connected

# Type Size # parameters

0 Input 5x5

1 Convolutional 512 filters; 3x3 size;

2-2 stride; 2048 neurons 5 120

2 FC 256 neurons 524 544

3 FC 128 neurons 32 896

4 FC 64 neurons 8 256

5 FC 32 neurons 2 080

6 FC (output) 4 neurons 132

573 028

In Table III we list the hyperparameters related to
the Q-learning and experience replay set-up, as well as
the neural network training algorithm used. The full
RL algorithm is coded in Python using Tensorflow and
Keras for the Q-network. A single desktop computer was
used, with training converging over a matter of hours (for
d = 3) to days (for d = 7).

TABLE II. Network architecture d=7.

# Type Size # parameters

0 Input 7x7

1 Convolutional 512 filters; 3x3 size;

2-2 stride; 2048 neurons 5 120

2 FC 256 neurons 1 179 904

3 FC 128 neurons 32 896

4 FC 64 neurons 8 256

5 FC 32 neurons 2 080

6 FC (output) 4 neurons 132

1 228 388

TABLE III. Hyperparameters

Parameter Value

discount rate γ 0.95

reward r -1/step; 0 at finish

exploration ε 0.1

max number of steps per syndrome 50

mini batch size, N 32

target network update rate 100

memory buffer size 1 000 000

optimizer ’Adam’

learning rate 0.001

beta1 0.9

beta2 0.999

decay 0.0
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