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Fill or kill limit order costs in currency markets
An empirical pricing model
NIKLAS FORSSTRÖM
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Fill or kill limit orders offer a way to execute an order, whilst imposing constraints
on the execution price. They are therefore an attractive instrument for any specu-
lating market participant. To make full use of the product, a model which describes
the expected capital gain for a given set of market conditions is highly beneficial.
Such a model can be leveraged in an algorithmic trading setting to make statistically
sound market predictions.

This Master’s thesis proposes and derives a model of the cost structure for fill or kill
limit orders in currency markets. The order book is modeled by means of a Markov
chain, which is used to predict the short term movements of the ask level. The un-
derlying assets fair value is estimated based on the order book history. The market
activity observed by a market participant is modeled as a function of the time of
day, the latency, as well as the time since the last market event. A compound model
based on these is evaluated and the model is found to offer significant improvements
over a reference model. Further investigations of market activity modelling and mar-
ket maker behaviour, particularly at times following events of high market impact,
should be carried out.

Keywords: Limit Order, Empirical model, Futures, Order Book, Fill or Kill.
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1
Introduction

Ampfield AB is a Swedish proprietary trading firm based in Stockholm. The com-
pany invests in futures contracts in commodities and currency markets. The invest-
ment decisions are made by mathematical models, aiming to predict trends in the
markets. This Master’s thesis project was carried out on behalf of Ampfield AB.

1.1 Background: The rise of algorithmic trading
Algorithmic trading was first introduced in American equities markets during the
1990s. Since then, rule-based investing and the strive towards automated invest-
ment strategies has become ever more dominant and now serve as a common mode
of trade.[1] These electronic markets vary in many ways - but they generally accept
two types of orders, market orders and limit orders.

A market order is an order to purchase or sell a security at the best price possible,
as soon as the order reaches the market. A market order ensures the buyer or seller
that the order will execute, but it does not place any guarantees on the execution
price. A limit order is a type of order to purchase or sell a security at a specified
price or better. For buy limit orders, the order will be executed only at the limit
price or a lower one. For sell limit orders, the order will be executed only at the limit
price or a higher one. This stipulation allows traders to better control the prices at
which they trade. While a limit on the order price is guaranteed, the filling of the
order is not, and limit orders will not be executed unless the underlying price passes
the limit order criteria. If the asset does not reach the specified price, the order is
not filled and the investor may miss out on the trading opportunity.

If the order cannot be filled immediately it is normally queued in the order book.
Each securities exchange uses its own specific algorithm, called a matching algo-
rithm, to match orders. They broadly fall under two categories: first-in-first-out
(FIFO) and pro-rata. Note however that exchanges such as cmegroup.com uses a
mix of the following systems: Allocation, FIFO, FIFO with LMM, FIFO with Top
Order and LMM, Pro-Rata, Configurable, Threshold Pro-Rata, Threshold Pro-Rata
with LMM.

A basic FIFO algorithm, also known as a price-time-priority algorithm, works by
giving the earliest active buy order at the highest price priority over any subsequent
order at that price. These orders all take priority over any active buy order at a
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1. Introduction

lower price. A basic pro-rata algorithm works by prioritizing active orders at a par-
ticular price proportional to the relative size of each order. Hence, all active orders
at the same price will get filled in equal proportions upon the arrival of an opposing
order.

1.2 Pricing of limit orders

When pricing a limit order, one can draw inspiration from options. A limit order
does not fall under the category of options, but it has a similar structure and can
therefore be priced in the same manner. To see why, consider short selling an Amer-
ican call option. If the buyer chooses to capitalize on the execution right, the seller
is obliged to comply. If the buyer chooses to withhold from executing the option, the
seller cannot affect this decision. Similar dynamics can be found after placing a limit
order. Consider a trader who places a limit order in a financial market. Under some
market conditions, the limit order will be executed and the trader will be obliged to
trade. However, under different market conditions, the order might not get executed.
In this case the trader will go without a trade. In both examples, the trader at-
tains an obligation to execute, yet he does not have the authority to force execution.

The various queuing algorithms complicates the dynamics of execution and therein
the pricing of the order. This problem can be alleviated by considering so called fill
or kill orders. These orders either fill immediately upon arrival at the brokerage,
or immediately get canceled. For a fill or kill order, the lifetime is essentially the
same as the latency experienced by the trader, i.e. the delay between the order
being placed and the order arriving at the order book. Since the latency for a given
marker participant is fixed and the order will either get filled or killed at this prede-
termined time, this order shares commonalities with European options. Moreover,
the order will only be executed if the market price is lower than the limit price. This
generally causes the price of the order to be negative, which makes it more natural
to consider the cost of placing such an order1.

The latency varies between market participants and depends on factors such as geo-
graphical distance to the exchange, evaluation speeds of the trading algorithms etc.
This latency is typically in the tenths of seconds, but some actors have a latency of
less than a millisecond. The short latency renders standard methods, such as the
Black and Scholes method, useless for pricing the limit order. Instead, market micro
structure effects become predominant.

1There are scenarios in which the price could be positive. An example would be a market with
low liquidity, where the asset has an obvious miss pricing. These scenarios are however unlikely.
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1. Introduction

1.3 Purpose
The thesis aims to empirically derive the cost structure for fill or kill limit orders,
with enough accuracy to be used in algorithmic trading strategies. The model is
primarily developed with high latency traders in mind. The purpose is to gain an
understanding for the driving market factors behind the cost of placing such orders.
Determining which of these factors play the most significant roles in affecting the
cost, as well as the manner in which they do so.

1.4 Methods and working procedure
The project was initialized by a theoretical examination of the problem. Key as-
sumptions such as the separability of the market activity from the order book evolu-
tion were formed and the quantities of interest were determined. Next, the market
activities of futures contracts on Australian dollars (AD), British pounds (BP),
Canadian dollars (CD) and Japanese yen (JY) were modeled. Models of varying
complexity were evaluated and compared to strike a good bias–variance tradeoff.

After this came the modeling of ask level transition probabilities. The state of the
order book was modeled by Markov chains, where the state representations varied
in complexity. The order book data is discrete in time - and values are only recorded
after a new market event is registered. Therefore, the models were initially com-
pared on a stepwise basis to avoid the added complexities from the market activity
modelling. Combinations from the two sets of models were then combined to form
compound models. These could evaluate the transition probability as a function of
time, rather than a function of the number of market events.

The next step was to evaluate different models of the fair asset value. There is no
trivial way in which the fair asset value can be measured - and different models
were used to predict the fair value based on the order book history. Lastly, this was
combined with the models for ask level transition probabilities to form estimates of
the cost for placing a fill or kill limit order. These final models were compared and
evaluated. Due to the large datasets as well as the stringent performance constraints
posed on the trading algorithms, the existing system was developed using C++.

1.5 Delimitations
This thesis is only concerned with the pricing of fill or kill type limit orders. Em-
pirical investigation of persistent limit orders introduces additional complications
related to biases in the data. Moreover, the thesis is only concerned with the pric-
ing of buy orders. The extension to fill or kill sell limit orders can be done naturally.
The contracts of interest have been restricted to currencies, but a similar analysis
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1. Introduction

could easily be extended to commodities.

The cost is evaluated purely with the historical information contained in the order
book. External information such as news, social media and press releases are not
taken into account. The limit price is always assumed to be the same as the current
ask price in the order book. Due to the short latency, it would be irrelevant to
consider fill or kill limit orders with limit prices much different from the ask price at
the time of placement. Moreover, the opportunity cost associated with not getting
an order executed is neglected. One could easily include such a penalty term, which
can be useful in the implementation of trading strategies. Lastly, with respect to
confidentiality agreements, parameter values have been excluded from the report.

1.6 Structure of the report
The report starts with an outline of the underlying theory in chapter 2. In the
chapter, more detailed explanations of futures contracts and order books are given.
The chapter transitions into a technical discussion of how fill or kill limit orders can
be priced - and what components are of key interest for the analysis. Methods of
evaluating these quantities are discussed in detail. Chapter 3 describes the practical
procedures associated with evaluating the quantities in chapter 2. It also describes
the methods by which the different models were compared. The section contains
figures, which illustrate the performance of the models and facilitate comparisons.
Finally, chapter 4 contains a discussion of the methodology, as well as a conclusion
on the acquired results. Recommendations for further investigations are given along
with the final remarks.
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2
Theory

This chapter gives an in-depth explanation of the theoretical assumptions and deriva-
tions used to evaluate the cost of placing a fill or kill buy limit order.

2.1 Forwards and futures contracts

A forward contract is an agreement between two parties to trade an underlying as-
set, for some pre-specified price K, at a fixed time T in the future. The forward
price K is set such that the price of the forward contract equals zero at the time t
of stipulation. Forward contracts were introduced as a way for companies to hedge
the risks associated with their line of business. An example would be an airline
company hedging the risk of a rise in oil prices. For this reason, forward contracts
tend to be non-standardised and traded Over The Counter (OTC).

Futures contracts are standardized versions of forward contracts, which facilitate
trading on an exchange. Much like forward contracts, futures contracts come with
the obligation to purchase a security at a predetermined future price and date. Fu-
tures contracts are marked to the market on a daily basis. In other words, as futures
prices change, daily cash flows are made - and the contract is rewritten in such a
way that the value of futures contract at the end of each day remains zero.[2] Due
to the contracts rewriting, the dividends at the end of each trading day may be
negative. Therefore, an investor is normally obliged to maintain a safety margin.
A futures contract can be closed at any time, without incurring a cost. This is
practically achieved by assuming a short position in the same contract, causing a
net zero effect.

Many futures contracts have a delivery date. If the position in the contract is not
closed before this date, physical delivery of the underlying asset will occur. Since the
majority of market participants are speculators, which are not interested in physical
delivery, they tend to close their positions shortly before termination of the contract.
They then enter into a new contract, whose date of delivery is further away in time.
This period of liquidity transfer is commonly known as the rollover period. For
further details of forwards and futures contracts, see Björk.[2]

5



2. Theory

2.2 The order book
The futures contracts from the preceding section are sold on an exchange. Such an
exchange is represented by a limit order book, which contains the prices that market
participants are willing to pay / receive for trading with the asset. If a buy limit
order is placed, this represents the willingness of an investor to buy at the price
associated with the limit order. If a seller enters a short position on the contract at
the same price or lower, the trade will be executed. Hence, the futures price is at
all times defined by the market - and the market information is summarized in the
order book. An order book illustration can be seen in figure 2.1

Figure 2.1: Illustration of an order book. The price axis runs horizontally and the
number of orders that are queued for a specific price is shown on the y axis. The
book has a tick size δ and spread S. The buy orders are queued on the left side -
and the sell orders are queued on the right side. The buy order with the highest
price zb is called the bid price. The sell order with the lowest price za is called the
ask price. The number of orders that are queued at za is called the ask depth da.
The number of orders that are queued at zb is called the bid depth db.

Note from figure 2.1 that the market has a smallest price increment δ, which is
known as the “tick size”. The buy limit orders in the market are represented by the
blue boxes to the left and the sell limit orders are represented by the red boxes to
the right. The highest price that any buyer is currently willing to pay for the asset
is called the bid price - and it is denoted by zb. Similarly, the lowest price of any sell
limit order in the market is known as the ask price za. The number of limit orders
that are waiting at the ask and bid prices are known as the first order depths of the
market, denoted da and db respectively. The orders at the best ask and bid prices
are said to be at the market. The buy limit orders that have a price lower than zb
and the sell limit orders that have a price higher than za are said to be out of the
market. The data associated with orders that are outside the market is commonly
referred to as higher order data.

The spread S, which in figure 2.1 is two, represents the number of ticks between the
ask price and the bid prize. Any limit order that falls between the bid price and
the ask price is said to be in the market. The arrival of such an order will change
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2. Theory

either the bid or the ask level, causing the new order to be at the market, and the
previous orders on the same side to be out of the market.

Given an order book like the one in figure 2.1, a natural question arises. What is the
current price of the asset? Moreover, given the full history of order books, what can
be said about the assets fair value? Having perfect knowledge of the two allows an
investor to capitalize on statistical arbitrage opportunities that arise in the market.
However, neither of these quantities are measurable in a trivial way.

2.3 Market microstructure and the break down
of Black Scholes

The fair price of any asset is determined by the expectations of its future price, dis-
counted to account for the time-devaluation of money. This incentivises speculators
to establish quantitative models that capture the future price moves of a given asset.
The most popular way of quantifying prices of financial derivatives is through the
Black Scholes framework. In this framework, prices are assumed to follow Geometric
Brownian Motions (GBMs) with constant drift µ and volatility σ2. This assumption
makes the log-returns of the asset values normally distributed, leading to manage-
able calculations that can be performed analytically. In reality, the the log returns
will not be normally distributed. However, if the time between measurements is suf-
ficiently large, the returns will be perceived as log normal - which is a consequence
of the central limit theorem. [3] This means that for small enough time scales, the
Black Scholes framework will not result in an accurate model of the price increments.

Instead, the price can be thought of as an unobservable process that diffuses be-
tween the bid and the ask price. The value could theoretically venture out of this
interval, but this would present an arbitrage opportunity. Such opportunities are
generally capitalized on very quickly, making them highly unlikely. Every market
event, defined as anything that changes the state of the order book, conveys infor-
mation that will affect the fair price according to some distribution. By quantifying
this distribution, one can gain insights into the concluding questions of section 2.2

2.4 Pricing a fill or kill limit order
Consider a fill or kill buy limit order being placed at time t. The order takes some
time to reach the market, which it does at time T . The latency T − t varies between
market participants due to differences in bandwidth, physical distance from the ex-
change etc. However, it generally ranges from milliseconds to tenths of seconds.

If the limit order is executed with a limit price l and the fair value of the asset is zT .
Then the cost of placing that particular order would be l − zT . This cost would be
incurred at the future time T - and would normally be associated with a discount
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factor. However, since the time intervals of interest are in the magnitude of seconds,
the overall drift of the asset price becomes irrelevant.[4]

If the order is killed, no payment is made on behalf of the trader. In such a scenario,
the cost of the order is defined to be 0. Depending on the investor preferences, a
penalty could also be imposed to represent the opportunity cost of not performing
a trade. However, for the remainder of this thesis, the preferences of the investor
will be chosen such that the opportunity cost of not performing a trade is 0. Under
this assumption, the cost function can be expressed explicitly as

C := E[l − zT |eT ,Ft] · P(eT |Ft) (2.1)

Where Ft denotes the non-anticipating filtration, encompassing all available infor-
mation about the asset at time t. Moreover, eT symbolises the event that the order
gets executed at time T . As described in section 1.5, the report only considers in-
stances where the limit price is the same as the ask price at time t. In practice, we
therefore have that l = zat , where zat indicates the ask price at time t. We also get
that eT = Iza

t ≥za
T
, and (2.1) becomes

C = E[zaT − zT |{zat ≥ zaT},Ft] · P(zat ≥ zaT |Ft). (2.2)

2.5 Estimates of the asset value
There are various ways to estimate the fair asset price from the time series of order
books. One of the most trivial ways is through the mid price. This is simply the
average between the ask and the bid level

Mt := zat + zbt
2 (2.3)

Whilst simple, it suffers from a number of unsatisfactory properties. Firstly, the mid
price only changes in the event that the ask price or bid price changes. It is therefore
a low frequency signal, which becomes problematic if the bid and ask levels change
infrequently. Secondly, it disregards all information prior to the time of evaluation.
Thirdly, numerous empirical studies have shown that it is not a martingale. The
reason is that consecutive ask price-movements tend to be negatively correlated.[5]

Assets can primarily be grouped into two classes, large-tick assets and small-tick
assets. Large-tick assets are such that “the bid-ask spread rarely exceeds the mini-
mum tick size”.[6] These are the assets where the tick size is significant, and which
therefore tend to trade with a spread equal to one. Another important characteristic
of large-tick assets is that they tend to have large queues in the limit order book.
The reason is that the price change of a one tick move will be highly significant. In
contrast, for small-tick assets, the typical spread is much larger than one. In such
case, investors can obtain priority in the order book by competing on price. This
diminishes the importance of the position in the queue.[7]
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A more sophisticated estimate of the fair price is the weighted mid price

Wt := zbt · (1− It) + zat It (2.4)

It := dbt
dat + dbt

, (2.5)

where dat is the ask depth and dbt is the bid depth at time t from figure 2.1. The im-
balance It is a measure of the relative difference in the first-order depths dat , dbt . This
gives an indication of how the bid and ask levels are likely to evolve. A drawback of
the weighted mid price is that it contains a large degree of noise - and similarly to the
mid price, empirical studies have shown that it’s not a martingale.[8] The weighted
mid price can also decrease at the placement of an aggressive buy order, which is
opposite to what one would expect.[8] Figure 2.2 shows a comparison between the
mid price and the weighted mid price for a futures contract on the Australian Dollar.

Figure 2.2: Illustration of the mid price and weighted mid price for Futures con-
tracts on the Australian Dollar. The upper black line represents the ask level. The
lower black line represents the bid level. The red line represents the mid price and
the blue line represents the weighted mid price.

2.5.1 The Micro-price
The undesirable properties of the above estimators leaves one looking for better
alternatives. One estimate, which is specifically constructed with the martingale
property in mind, is Sotikov’s micro-price.[8] The micro-price is defined as the mid
price plus an adjustment term.

zmicrot := Mt + g(It, St), (2.6)
where It is the imbalance from (2.5) and St = (zat − zbt )/δ is the spread. The
micro-price can also be viewed as a sequence of approximations

zmicrot = lim
i→∞

zit. (2.7)

The idea is for zit to account for the first i mid price moves. To derive an expression
for the micro-price, one relies on two assumptions. The first assumption is that the
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information in the order book is generated by the filtration from the following 3
dimensional Markov process

Gt = σ(Mt, It, St). (2.8)

The second assumption is that the expected mid-price increments are independent
of the mid price level. This can be stated mathematically as

EGt [Mτi
−Mτi−1 |Mt = M, It = I, St = S]
= EGt [Mτi

−Mτi−1|It = I, St = S], t ≤ τi−1. (2.9)

Under these assumptions, it can be shown that the ith mid-price prediction is

zit = Mt +
i∑

k=1
gk(It, St). (2.10)

Where

g1(I, S) = EGt [Mτ1 −Mt|It = I, St = S] (2.11)

and

gi+1(I, S) = EGt

[
gi (Iτ1 , Sτ1) | It = I, St = S

]
,∀i ≥ 0. (2.12)

Note that I ∈ [0, 1] and S ∈ N+. By discretizing these domains into n and m values
respectively, one can simplify the expression of the micro price. Define the process
Xt := (It, St), along with the following matrices

Qxy := P (Mt+1 −Mt = 0 ∧Xt+1 = y | Xt = x)
Rxk := P (Mt+1 −Mt = k | Xt = x)
Txy := P (Mt+1 −Mt 6= 0 ∧Xt+1 = y | Xt = x)
G1(x) := (∑Qs−1R)K = (I−Q)−1RK

B := (I−Q)−1T

K := [−1, −1
2 ,

1
2 , 1]T ,

(2.13)

Where Q ∈ Rnm×nm, R ∈ Rnm×4, T ∈ Rnm×nm, B ∈ Rnm×nm, I is the nm × nm
identity matrix and k ∈ K. G1 is a vector of length nm, where each element
represents the first order adjustment for a particular imbalance and spread. The
matrix B is used to express the ith mid price prediction, which becomes

zit = Mt + (
i∑

k=0
BkG1) · ~eIt,St . (2.14)

The vector ~eIt,St is the indicator vector, whose non-zero element corresponds to the
active state of It and St. The micro-price is attained by letting the number of
adjustments tend towards infinity.

10
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zmicrot = lim
i→∞

zit = lim
i→∞

Mt + (
i∑

k=0
BkG1) · ~eIt,St . (2.15)

A caveat of the above expression is that the sum in (2.15) is not guaranteed to
converge. But as the following theorem states, it will if certain conditions are met.

Theorem 1 If B∗ = limk→∞B
k satisfies B∗G1 = 0, then the limit

lim
i→∞

zit = zmicrot (2.16)

converges.

In practice, the condition posed by theorem 1 can be achieved by a pre-processing
of the data. This involves symmeterizing the data so that every observed state
(characterized by (It, St, It+1, St+1, dM), where dM := Mti−Mti−1) is complemented
by a mirrored state (1− It, St, 1− It+1, St+1, −dM). This ensures that B∗G1 = 0,
which leads to the converging poperty as per theorem 1. For further details, as well
as a proof of theorem 1, please refer to Stoikov.[8]

2.6 Modeling order book evolution
The expression for the limit order cost (2.2) can be further expanded by conditioning
on whether the ask level changes in the interval [t, T ].

C =E[zaT − zT |{zat = zaT},Ft] · P ({zat = zaT}|Ft)
+ E[zaT − zT |{zat > zaT},Ft] · P ({zat > zaT}|Ft) (2.17)

Note that there is no term for {zat < zaT} since an increase in ask level would mean
no execution. Establishing the cost of a fill or kill limit order can therefore be bro-
ken down into determining the above four terms. The first product in (2.17) will
dominate the expression, especially for small times. This is because the transition
probability P ({zat > zaT}|Ft)→ 0 as [T − t]→ 0.

The non-anticipating filtration Ft is assumed to be well approximated by the fil-
tration FO

t . FO
t is generated by the sequence of historical order books ~Ot =

{O1,O2, . . .Ok}, where Ok is the order book which is being observed at time t.
We therefore have

FO
t := σ {O1,O2, . . .Ok} . (2.18)

Also note that Gt ∈ FO
t . The use of this filtration leads to a slightly modified version

of (2.17), which takes on the form

C =E[zaT − zT |{zat = zaT},FO
t ] · P({zat = zaT}|FO

t )
+ E[zaT − zT |{zat > zaT},FO

t ] · P({zat > zaT}|FO
t ). (2.19)
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In light of equation 2.19, one becomes interested in modeling the short term be-
haviour of the limit order book. This behaviour is assumed to be separable into one
part which models the market activity, i.e. the incoming market event frequency.
The other models the transitional behaviour of the order book, conditioned on a
certain number of market events. The limit order book will be assumed to follow
a Markov process, whose transition probabilities are only affected by the previous
order books - and not the time in between market events. The theory involving
these models will be discussed in the preceding chapters.

2.7 Markov chains
AMarkov chain is a stochastic process {Xt}, describing a sequence of possible events,
where the probability of moving to a certain state only depends on the preceding
state. In other words

P(Xt = x|X1 = x1, X2 = x2, , Xt−1 = xt−1) = P(Xt = x|Xt−1 = xt−1) (2.20)

A Markov chain is said have finite memory if the number of attainable states are
finite. The one step transition probabilities of a discrete Markov chain with finite
state space are given by the transition matrix Π, which satisfies

Πij := P (Xn+1 = j | Xn = i) (2.21)

Let µn = [p1, p2, . . . , pm], where ∑m
i=1 pi = 1, be some probability distribution of

markov states in a finite state space. Then the distribution µn+k, which occurs k
steps later, can be expressed as

µn+k = µnΠk. (2.22)

An absorbing state in a Markov chain is a state that, once entered, cannot be left.
In other words, if i is an absorbing state, then Πi,i = 1. Therefore, if the state
representation is ordered such that the r absorbing states come last, one gets a
transition probability matrix of the form.

Π =
[
Q R
0 I

]
(2.23)

WhereQ is a rectangular transition matrix between transient states, R is a transition
matrix from transient to absorbing states and I is the identity matrix.

2.8 Modeling the order book by a Markov chain
The order book is modeled by a Markov Chain. In order to ensure finite memory and
stationairty, changes in parameters values, as opposed to the parameters themselves,
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are considered. To this end, the following definition is made

ζ(xt, xt−1) :=


1 if xt > xt−1

0 if xt = xt−1

−1 if xt < xt−1.

(2.24)

The state of the Markov process is represented as

S(ti) :=

 Iti
ζ(dati , d

a
ti−1

)
ζ(dbti , d

b
ti−1

),


T

, (2.25)

where Iti is the imbalance at time ti. In order to reduce the state-space, Iti was
binned according to {[0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1]}. Moreover, two ab-
sorbing states were defined to represent when the ask price changes. One for the
case when the ask level increases - and a separate one for when the ask level de-
creases. The state space therefore contained a total of 4∗3∗3+2 = 38 states. With
help of the following hash function, the state was represented as an identity vector

µti =


e(37) if ζ(zati , z

a
ti−1

) = 1
e(5 + ζ(dbti , d

b
ti−1

) + 3ζ(dati , d
a
ti−1

) + 9b Iti

0.25c) if ζ(zati , z
a
ti−1

) = 0
e(38) if ζ(zati , z

a
ti−1

) = −1,
(2.26)

where e(x), x ∈ 38 is the indicator vector, with the xth element equal to one. This
gives a transition probability matrix π of size 38× 38 of the following form

Π =
[
Q R
0 I

]
, (2.27)

where Q ∈ R36×36, R ∈ R36×2 and I ∈ R2×2.

2.9 Bayesian inference of Markov chains
Bayesian inference is used to derive predictions of model parameters with the help of
historical observations. Let ξ be a parameterized model, which has been postulated
to capture the behaviour of the data. Let ~θ represent the parameters of this model
and let ~x be a vector of observations. Bayes theorem states that

P(~θ|~x, ξ) = P(~x|~θ, ξ) P(~θ|ξ)
P(~x|ξ) (2.28)

The so called model evidence P(~x|ξ) is the same for all possible parameter values. It
therefore does not affect the relative probabilities of the different model parameters.
Instead, it serves as a normalization term and makes sure that P(~θ|~x, ξ) satisfies
the criteria of a distribution. This term tends to be very hard to evaluate, which in
turn hinders the evaluation of the posterior distribution P(~θ|~x, ξ). This issue can be
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amended is by making use of conjugate priors.

Conjugate priors cause the posterior distribution P(~θ|~x, ξ) to take on the same form
as the prior distribution P(~θ|ξ), thereby removing the need to explicitly calculate
the model evidence. For the Markov chain, described by the transition probability
matrix in section 2.8, the conjugate prior is a product on Dirichlet distributions.[9]
Moreover, the parameter vector ~θ is

~θ := {α(µti |µti−1), i ∈ [1, 2, . . . , N ]}, (2.29)

where each hyperparameter α(µti |µti−1) ∈ R+. The quantity P(~θ|ξ) is known as
the prior distribution - and it can be used to account for previous assumptions
on the model dynamics. Moreover, the initial values that one assigns so the hy-
perparameters can be thought of as a set of fake counts ñ(µti , µti−1), such that
α(µti , µti−1) = ñ(µti , µti−1) + 1. By setting {α(µti |µti−1) = 1, ∀µti ∈ U}, which is
equivalent to setting all fake counts to be 0, one gets a uniform prior distribution
over the model parameters. This represents the scenario where no prior information
about the distribution is taken into account.

With the use of such a conjugate prior, the posterior distribution for the Markov
chain parameters can be analytically expressed as

P(θ|~x, ξ) =
∏

µti∈U

 Γ(n(µti−1) + α(µti−1))∏
µti−1∈U Γ(n(µti , µti−1) + α(µti , µti−1))

× δ(1−
∑
µti−1

p(µti |µti−1))

×
∏

µti−1∈U
p(µti |µti−1)n(µti ,µti−1 )+α(µti ,µti−1 )−1

, (2.30)

where n(µti , µti−1) is the number of observations going from µti−1 to µti . Moreover,
equation (2.30) makes use of the shorthand notations n(µti) := ∑

(µti−1∈U) n(µti , µti−1)
and α(µti) := ∑

(µti−1∈U) α(µti , µti−1). Since the posterior also follows a product of
Dirichlet distributions, the mean can be analytically expressed as

Epost
FO

ti

[P(µti |µti−1)] = n(µti , µti−1) + α(µti , µti−1)
n(µti−1) + α(µti−1) . (2.31)

Equation 2.31 can be factored into

Epost
FO

ti

[P(µti |µti−1)] = 1
n(µti−1) + α(µti−1)

×
[
n(µti−1)

(
n(µti−1 , µti−1)
n(µti−1)

)
+ α(µti−1)

(
α(µti , µti−1)
α(µti−1)

)]
(2.32)

where n(µti , µti−1)/n(µti−1) is the maximum likelihood estimator of the given data
and α(µti , µti−1)/α(µti−1) is the prior expectation of transitions going from µti−1 to
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µti . Note that if n(µti−1) >> α(µti−1), the posterior estimate will converge to the
MLE. Lastly, the variance of the posterior follows

Varpost
FO

ti

(P[(µti |µti−1)]) = n(µti , µti−1) + α(µti , µti−1)
(n(µti−1) + α(µti−1))2

×
(n(µti−1) + α(µti−1))− (n(µti , µti−1) + α(µti , µti−1))

(n(µti−1) + α(µti−1) + 1) .

(2.33)

2.10 Modeling market activity
Since the number of incoming market events depends on the number of active mar-
ket participants, one would expect the market activity to fluctuate throughout the
day. Moreover, once an order is placed, another one is more likely to follow soon
thereafter. This is based on the assumption that other market participants are more
likely to readjust their positions shortly after a trade has entered the market.

The simplest model of market activity would be a constant frequency f0. The model
can be made more sophisticated by taking the time of day, which is represented by
ν ∈ [0, 24), into account. The market activity can therefore be modeled as.

f1(ν) := f0 · g(ν) (2.34)
Where the function g(ν) satisfies E[g(ν)] = 1. An additional variable of importance
is the time ∆t since the last order. With this in mind, the frequency model f2(ν,∆t)
is defined. The function is assumed to be separable in its parameters - and the
market activity is therefore modeled as

f2(ν,∆t) := f0 · g(ν) · h(∆t), (2.35)
where ν ∈ [0, 24), ∆t ∈ [0,∞) and the functions g(ν) and h(∆t) satisfy EFO

ti
[g(ν)] =

EFO
ti

[h(∆t)] = 1. However, this instantaneous model of the market activity does not
give full insight into the average market activity that an investor observes during
the time interval [t, T ]. To take the latency period into account, a final model is
defined.

f3(ν,∆t, T − t) := f0 · g(ν) ·H(ν,∆t, T − t), (2.36)
where H(ν,∆t, T − t) is a modification of h(∆t) which takes the latency period into
account. It also satisfies EFO

ti
[H(ν,∆t, T − t)] = 1.

2.10.1 Activity fluctuations thoughout the day
The assets of interest are traded on CME Group. They are traded around the clock,
apart from a one hour daily break between [16:00, 17:00] central time (CT). How-
ever, the trading activity tends to be substantially lower during the intervals 15:00 -
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16:00 and 17:00 - 18:00. This is a consequence of the time zone differences between
countries varying throughout the year. To see why, consider a Japanese investor
starting his day at 08:00 (JST). This would either correspond to 17:00 or 18:00 in
(CT). Which one it is depends on the daylight savings time cycle in the US. The con-
sequence is that the trader is always active at ν = 18, but only sometimes for ν = 17.

Apart from the frequency drop discussed above, market activity displays three sig-
nificant peaks throughout the day, which correspond to a high trading activity in
America, Europe and Asia. The American peak tends to be the most prominent,
followed by the European and lastly the Asian. To capture these behaviours, the
function g(ν) was parameterized according to

g(x;~a, ~µ,~γ, c) := R(x) · (a1fµ1,γ1(x) + a2fµ2,γ2(x) + a3fµ3,γ3(x) + k)
R(x) := I{x ∈ [0, 24) ∩ [16, 17]} · (1− c · I{x ∈ [15, 18]})
such that
E[g(u)] = 1, where u ∼ U [0, 24),

(2.37)

where fx0,γ(x) is the Cauchy probability density function with location parameter
x0 and shape parameter γ, i.e.

fx0,γ(x) = 1
πγ[1 + (x−x0

γ
)2] . (2.38)

An analytical expression for the constant k is derived in A.1.

2.10.2 Time since last market event
Market makers and other market participants change their positions based on new
information in the market, which comes in the form of orders placed by other in-
vestors. For this reason, one would expect the market activity to be higher shortly
after an order has been placed. Similarly, one would expect a low market activity to
persist if the time since the last market event is large. To model this behaviour, a
function h(∆t) is introduced. It represents the frequency compensation one would
expect, up until the next market event, given that the last event occured a time ∆t
ago. This decaying function is parameterized as

h(∆t) := a

b+ ∆t + c. (2.39)

However, if a new market event arrives within the latency period [t, T ], the function
h(∆t) will no longer model the average market event experienced by the investor.
To account for this, the function h(∆t) is replaced by H(ν,∆t, T − t). Under the
simplifying assumption that the frequency is deterministically modeled by the func-
tion h(∆t), one can derive an expression for H(ν,∆t, T − t). The detains of this
derivation are presented in A.2, and its resulting parameterization is

H(ν,∆t, T − t) =


h(∆t) , if h(∆t) ≤ x

h(0) + x(1− h(0)
h(∆t)) , if h(∆t) > x

x = 1/(T − t)g(ν) f0.
(2.40)
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2.10.3 Putting it together
Assume that the number of market events in the interval [t, T ] is some whole number
n. The transition probability term P({zat > zaT}|FO

t ) in equation (2.19) could then
be approximated as

P({zat > zaT}|FO
t ) ≈ ·µ · Πn[., j]. (2.41)

Where j is such that Πn[., j] corresponds to a n-step transition to the absorbing
state {zai+1 < zai }. The number of market events n was approximated by the fre-
quency distribution derived in section 2.10. Note that this expectation need not be
a whole number. Therefore, the final approximation of the transition probability is
interpolated according to

P({zat > zaT}|Ft) ≈ µ ·
(
(dηe − η)Πbηc[., j] + (η − bηc)Πdηe[., j]

)
.

η = EFO
ti

[fi(x)]. (2.42)

Where fi(x) is any of the frequency distribution models from section 2.10, bxc is
the floor function and dxe is the ceiling function.
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3
Methods and Results

This chapter covers the evaluation procedure of the models described in chapter 2.
Unless otherwise stated, the functions in this chapter have been fitted by means of
the least squares method - and the empirically fitted version of any model m will
be referred to as m̂. Whenever the testing and training data is mentioned, it is
referring to the data partitioning described in section 3.1. A number of figures will
display model MSEs. These have been made relative, meaning that they show the
relative MSE with respect to some benchmark model. This benchmark model is
stated for each graph individually. The corresponding absolute MSE plots can be
found in section A.4.

The following sections will make frequent use of references to the last market event
before some time t. It will also refer to the first market event preceding some time
t. The times of these events are denoted t and t respectively. They are formally
defined as t := max t̃i s.t. t̃i ∈ ~̃t, t̃i ≤ t

t := min t̃i s.t. t̃i ∈ ~̃t, t̃i > t.
(3.1)

An illustration of market event times, along with t and t, can be seen in figure 3.1.

Figure 3.1: Illustration of market event times. There are M market events, occur-
ring at times {t̃1, . . . , t̃M}. The time t is arbitrarily selected and does not necessarily
correspond to a market event. t is the time of the last market event before t. t is
the time of the first market event preceding t.

3.1 Data
The data used in the analysis came from Futures contracts on Australian Dollars,
Canadian dollars, Brittish pounds, and Japanese yen. These were all traded on
CME Group between Sun 5:00PM - Fri 4:00 PM Central Time (CT) - and there was
a daily one hour break between 16:00 and 17:00 (CT). Since the market opening
hours are expressed in CT, it will be the default time zone for all times mentioned.
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As described in section 2.1, futures contracts have a delivery date. On CME group,
any currency is associated with four annual contracts. This leads to four roll over
periods, where liquidity moves from one contract to the next. The roll overs happen
in a relatively fast and synchronized manner. Unreliable results as a consequence of
this rollover period were avoided by removing data from the day leading up to and
preceding the rollover.

The dataset ranged from 2015-03-01 to 2018-10-17. During this time, market data
was registered with nanosecond precision. The dataset was split into one training
set and one testing set. The training set ranged from 2015-03-01 to 2017-12-31,
whereas the testing set ranged from 2018-01-01 to 2018-10-17. All the models were
fitted using the training dataset and all testing was conducted on the testing dataset,
which ensured that causality was not violated.

3.2 Market activity models

The base-frequency f0 of the contract was estimated as the mean frequency f̂0 of
the training set. f̂0 was evaluated by dividing the total number of market events by
the duration of the training data set (the daily one hour break was considered part
of the active interval).

Figure 3.2 shows ĝ(ν), the fitted version of g(ν) from section 2.10.1. ĝ(ν) was fitted
using MLE on a histogram of data with 1440 intervals. The figure also contains
the training and testing data. Note that ĝ(ν) largely captures the behaviour of the
testing data. Moreover, the market activity goes to 0 between 16:00 - 17:00. The
trading activity is also substantially lower during the intervals 15:00 - 16:00 and
17:00 - 18:00, Which is well captured by the parameterization. Lastly, the existence
of outliers can be noted around 10:00, which are associated with a significant in-
crease in market activity.
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Figure 3.2: Market activity as a function of the time of day ν. The figure contains
training data (blue), testing data (red) and ĝ(ν) - the fitted version of g(ν) from
section 2.10.1.

The data collection procedure for ĥ(∆t) is illustrated by figure 3.3. Time points
{t1, . . . tN} were selected with a fixed spacing I = 100 s. For each time point tn, the
times {tn, tn} of the previous and receding events were recorded. ∆t was measured
as tn − tn.

Figure 3.3: Data collection procedure for h(∆t), with time ranging over the hori-
zontal axis. The times tn, n ∈ {1, . . . , N − 1} were predetermined.

From here, the estimate ĥ(∆t) was calculated as ĥ(∆t) = 1/[(tn − tn) · ĝ(ν) · f̂0],
where f̂0 and ĝ(ν) were evaluated according to the preceding discussion. Figure 3.4
shows the fitted function h(∆t), along with the training and testing data.
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Figure 3.4: One step frequency compensation h(∆t), as a function of the time ∆t
since the last order. The blue data comes from the training set - and the red data
comes from the testing set.

Lastly, Ĥ(T − t,∆t) was determined from the parameterization of ĥ(∆t), by means
of equation (2.40).

3.2.1 MSE for the number of market events
Figure 3.5 illustrates the evaluation procedure used to compare the market activity
models.

Figure 3.5: Evaluation procedure for market activity models. The time points
{t1, . . . tN−1} were separated by a fixed interval I = 3 min. The time (T − t) was
kept fixed throughout all intervals.

The testing data was divided into intervals of equal length I = 3 min. For each
interval, the time of the last preceding order tn was recorded - and ∆t was evaluated
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as tn − tn. With this information, the fitted frequency models {f̂0, . . . f̂3} from
section 2.10 could be evaluated. The time Tn was selected so that

Tn − tn = (T − t), ∀n ∈ {1, . . . , N}, (3.2)
where (T − t) represents the desired latency period. The number of predicted orders
for frequency model fi was therefore fi · (T − t). The corresponding residual was
calculated as the difference between this prediction and the observed number of
orders in the interval [tn, Tn]. Figure 3.6 contains relative MSEs for the number of
orders observed in an interval of 100 ms. The fitted fixed frequency model f0 was
used as the benchmark.

Figure 3.6: Relative MSEs for the number of orders observed in an interval of 100
ms. The MSE values are reset at the change of each contract, resulting in the three
discontinuities across the time period.

Note that f̂2 consistently maintains the lowest MSE of the frequency models (except
for short intervals of of the JY contracts). Note also that f̂3 tends to give results
comparable to f̂1 and f̂0.

3.3 Markov transition models
As described in section 2.8, the order book was modeled by a Markov chain. This
section describes the parameter fitting procedure, as well as the model validation
procedure, associated with this assumption.
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To quantify the degree by which the Markov transition model predicted changes
in future ask levels, the full transition matrix was compared to two other models.
A naive one, which contained constant up and down transition probabilities for all
states, as well as a no-memory model. The no-memory model only took the imbal-
ance into consideration and thus neglected previous market orders. All parameters
of these models were extracted from the empirically estimated transition matrix Π̂.

In order to fit the Markov transition matrix, all of the market events {t̃2, t̃3, . . . , t̃M−1}
contained in the training set were used. For each of these time points t̃n, the market
event at t̃n−1 was used to evaluate the Markov state µt̃i−1 . Moreover, the observa-
tions {t̃n, t̃n+1} were used to evaluate µt̃i . With the help of these quantities, equation
(2.31) was used to evaluate an estimate of the transition matrix. It should be noted
that the instances for which zat̃n 6= zat̃n−1

were excluded from this evaluation. The
reason being the assumption that the Markov state associated with a change in ask
level is absorbing.

Once the full transition matrix had been evaluated, the two less detailed transition
matrices could be inferred. The naive one only used a fixed transition probability
for all states - and was therefore calculated as two weighted averages. One for the up
transitions and one for the down transitions. These averages weighted the transition
probability of each element in the transition matrix by the number of observations
that were used to generate the value. An identical, but more fine grained approach
was used to evaluate the no history model. Here, the entries in the transition
matrix were grouped by imbalance - and the up and down transition probabilities
were calculated for each of the imbalance values.

3.3.1 k-step ask level transition probabilities
The sampling procedure for evaluating the k-step ask level transition probabilities
is illustrated in figure 3.7. Sample times tn, n ∈ {1, . . . , N − 1} were selected with a
uniform spacing I = 10 s. For each of these times, the previous order books (at time
t̃m = tn and t̃m−1) were used to evaluate the Markov state. The three transition
models were used to predict the probability that the ask level at time t̃m+k would
be different from the one at time tn.

Figure 3.7: Evaluation procedure for the k-step transition probability of the
Markov transition models.

The order book at time t̃m+k was then used to measure I{zat2 < zat1} and I{z
a
t2 > zat1}.

Residuals were attained by subtracting the predicted transition probabilities from
their respective indicator functions. The residuals were then used to calculate MSEs
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for the transition probabilities of the respective models. Figure 3.8 shows MSE plots
for the one step ask level transition probabilities, i.e. k = 1. Note that the full and
no history models tend to have a lower MSE than the naive model. Also note that
there is no direct indication that the full model outperforms the no history model.

Figure 3.8: Relative MSE for the single transition probabilities of the assets.
The MSE values are reset at the change of each contract, resulting in the three
discontinuities across the time period.

Figure 3.9 shows relative MSE plots for the multiple step ask level transition prob-
abilities (k > 1), with the naive model acting as a benchmark. Note that the no
history model tends to continuously outperform the full model. Note also that both
of these models outperform the naive model, with the exception of AD.
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Figure 3.9: Relative MSE for the multiple step ask level transition probabilities,
for the three models introduced in section 3.3.

3.4 Micro Price estimation

The model fitting procedure for the micro-price was conducted as follows. Firstly,
the number of bins for the imbalance and spread were determined. Then, all market
events in the training set were iterated over. For any of these market event times
t̃n, the subsequent time t̃n+1 was also recorded. These times were in turn used to
evaluate the touple {Ot̃n , Ot̃n+1}. From each pair of order books, the parameters
(It̃n , St̃n , It̃n+1 , St̃n+1 , dM) from section 2.5.1 were recorded. The states needed to
be mirrored in order to ensure convergence of the micro-price - and each observation
was therefore paired with a fictitious observation, characterized by (1 − It̃n , St̃n ,
1− It̃n+1 , St̃n+1 , −dM). These values were then grouped and aggregated to form the
frequency matrices R̃, T̃ , Q̃.

After the training data had been iterated over, these frequency matrices were con-
verted into empirical transition probability matrices R̂, T̂ , Q̂. This was done by
dividing the number of observations in each element by the corresponding rowsum
of the matrix T̂ + Q̂. Then, the micro price adjustments was calculated according to
the steps in 2.5.1. Figure 3.10 illustrates the micro-price adjustments x, expressed
as fractions of a tick, for the four assets. In other words, the micro-price from (2.15)
would be calculated as zmicrot = Mt + St · x.
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Figure 3.10: Micro price adjustment, expressed in number of ticks, for the four
assets. The instances where St > 2 have been neglected.

The horizontal black line is the adjustment associated with the mid price M . This
is always 0 since no adjustment needs to be made. The diagonal black line is the
adjustment associated with the weighted mid price W . The weighted mid price
increases linearly with the imbalance - and coincides with the mid price for an im-
balance I = 0. Note that the micro-price tends to fall between the two - and that
the adjustment for a spread of one tends to follow the weighted mid price more
closely than the adjustment for a spread of two. The micro-price adjustments for
S > 2 have been excluded from the figure.

3.5 MSE for the fair asset value
To evaluate the fair asset value models from section 2.5, the data was segmented into
intervals of length I = 3 min. This time was chosen to give a good balance between
the estimates variance, which grows with time - and order book correlation, which
decreases with time. For each time tn the previous market event time tn was used
to evaluate the fair asset value estimates Mt, Wt, zmicrot .

The order book at time τn = tn+1 was then used to evaluate another estimate of the
fair asset value. Residuals for all combinations of fair value estimates were recorded
as the difference between the model predictions - and the residuals were then used

27



3. Methods and Results

to calculate MSEs. The results can be observed in figure 3.11, where the double
micro-price model is used as a benchmark.

Figure 3.11: Relative MSE for the fair price estimates discussed in section 2.5.
The transparency of the lines indicates what model was used to estimate the price
at time t. The colour indicates what model was used to approximate the asset value
at time τ .

The transparency of the lines indicates what model was used to estimate the asset
value at time t. The colour indicates what model was used to approximate the asset
value at time τ . Note that for the majority of observations, using the micro price
model at both time points tends to yield the lowest MSE. The only exception is JY,
where the micro-price results in a higher MSE for two of the time intervals.

3.6 Compound model evaluation

This section describes the evaluation procedure after the fitted Markov models and
frequency models had been combined to form compound models. A generic illustra-
tion of the evaluation procedures can be seen in figure 3.12.
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Figure 3.12: General evaluation procedure for the compound models. The time
points {t1, . . . , tN−1} were separated by a fixed interval I = 3 min. Each of these
time points tn represents the time of placement for a fictitious limit order. The
associated time Tn represents the time that the order is filled or killed. sbkc and
sdke represent the previous and preceding market events with respect to Tn. k is the
predicted number of orders according to the given market activity model.

3.6.1 MSE for ask level transition probabilities over time
intervals

Evaluating the MSE for multiple step ask level transition probabilities, as described
in section 3.3.1, yields some insight into the predictability of the model. However, the
more natural investigation is how accurately the model predicts transaction proba-
bilities over some time interval [t,T]. Therefore, the compound model was used to
predict the transition probability within fixed time intervals.

Firstly, the number of market events was predicted. Secondly, the transition prob-
abilities were evaluated using the Markov models. Predictions on the number of
orders in the interval T − t were done in the same way as in section 3.2.1. How-
ever, the time Tn in figure 3.12 is unlikely to coincide with one the predicted market
events. This means that the expected number of events in the interval [tn, Tn] is
unlikely to be an integer. Therefore, transition probabilities pbkc and pdke at times
sbkc and sdke were evaluated. This was done by means of the transition matrices
Πbkc and Πdke. Linear interpolation was then used to derive the final estimate of the
transaction probability according to

pk = pbkc + (pdke − pbkc) · (dke − k) (3.3)

These transition probabilities were then compared to whether or not the ask level
actually changed during the interval. This was quantified as |f(zati , z

a
ti−1

)|, where
f(xt, xt−1) is defined as in (2.24). The residual between the two quantities was used
to calculate the MSE. Figure 3.13 shows relative MSE plots of ask level transition
probabilities, during intervals of length 100 ms. The fixed frequency model with a
constant transition probability was used as a benchmark. Note that there are no
clear indications of any model outperforming the others.
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Figure 3.13: Relative MSE for the ask level transition probabilities, over time
intervals of length 100ms, as a function of time. The MSE values are reset at the
change of each contract, resulting in the three discontinuities across the time period.

3.6.2 MSE for cost estimates

During the evaluation procedure of the cost estimates, the data was partitioned into
intervals of length I = τ − t = 3 min. The cost predictions were calculated at time
t according to (2.19). This included evaluating the transition probabilities in the
interval [tn, Tn], as well as evaluating the fair value of the asset. The asset price
after a down move was always assumed to be the mid price.

Next, the ask level value was recorded at time Tn. This gave information of whether
or not the order was filled. Lastly, the fair price of the asset was approximated
at time τn. This was solely done using the micro-price, motivated by the results of
figure 3.11. The residual was then calculated as the difference between the predicted
cost and zatn − zmicroTn

. The results for a latency T − t = 100 ms can be seen in figure
3.14, where a naive cost model of half the spread is used as a benchmark. Note that
most of the models tend to give lower MSEs than the Naive model. Also note that
the models making use of the micro-price tend to have the lowest MSEs.
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Figure 3.14: Relative MSE for the cost of a fill or kill buy limit order, where the
naive cost model is used as a benchmark. Note that the models which make use of
the micro-price have the lowest MSEs.
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4
Discussion and Conclusion

This chapter discusses the results and possible improvements of the analysis con-
ducted in chapter 3. The report is finished by a presentation of the final conclusions.

4.1 Frequency modelling
The existence of outliers were noted in figure 3.2, close to 10:00. Moreover, these out-
liers tend to have values that are significantly higher than what would be expected.
A likely explanation for this phenomenon is the releasing of financial reports, which
tend to spark trading activity. This effect could further be taken into account by
allowing the function g(ν) to take on separate values at these specific points.

The fitted function ĥ(∆t) in figure 3.4 does a decent job of flitting to market data.
However, it can be noted that the function has a slightly sharper bend than the
data, causing the residuals to be positive around 80 ms. Moreover, it seems like
there is still some long term decay which the model does not capture. This can be
noted since the residuals tend to be larger close to 1000 ms than they are by 500 ms.
Exponentially decaying models were also evaluated, but they were unsuccessful in
capturing the behaviour during the first 100 ms following a market event.

The fact that f2 in figure 3.2.1 consistently maintains the lowest MSE out of the eval-
uated frequency models is interesting. This is because f3 was designed to take the
frequency shift in the interval [t,T] into account. An explanation may lie in the way
H(∆t, T − t) was evaluated. The underlying assumption of this derivation, which
can be found in section A.2, was that the market event frequency was deterministic.
In fact, the actual frequency follows some distribution. By taking this distribu-
tion into account, one may arrive at a better approximation. In further research, it
would be especially interesting to take a Bayesian approach, much like in section 2.9.

One could discuss whether the relationship between the functions g and h is addi-
tive or multiplicative. A multiplicative relationship would indicate that all market
participants act in a similar way. However, this is not necessarily the case. Market
makers and algorithmic traders are usually active around the clock - and they are
likely the fastest participants in the market. Hence, the market activity for small
values of ∆t may not scale linearly with the overall activity in the market. It would
be interesting to investigate the market activity for small values of ∆t in greater
detail - and include models of market maker behaviour in the analysis.
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4.2 State modelling
In section 2.6, it was assumed that the filtration Ft is well approximated by FO

t .
This is equivalent to assuming that all predictive information about the process can
be attained from looking at historical order books. This is a natural assumption in
the current setting, yet it is simultaneously neglects the effects that other factors
might have on the process. Examples of these are the more fundamental indicators
that value investors make use of to drive trades. However, these indicators are often
used to determine the long term drift of the asset price. During the short time
intervals associated with this kind of algorithmic trading, the long term drift of the
process is assumed to be 0 - and these predictors become less informative. It would
be interesting to further introduce the input of data external to the order book.
There is for example active research on the impact that social media and news has
on financial markets. [10] [11]

It can be noted that the one step transition probabilities generate better out of
sample returns if the previous market event type is taken into account, as illustrated
by figures 3.8 and 3.9. However, as can be seen in figure 3.13, the power of this
predictability is reduced when a fixed time interval is considered. This is due to the
added uncertainty of approximating the number of market events in the interval.
With an improved model of market activity, the previous market event type may
offer a significant improvement in predictability compared to the no history model.

4.3 Fair price estimation
Figure 3.11 indicates that using the micro-price to evaluate the fair price is prefer-
able compared to using the mid price or weighted mid price. The impact of this is
also notable in figure 3.14, where the micro-price models generate the lowest MSEs.
This is not surprising since figure A.1 indicates that we are dealing with large tick
assets. It would be interesting to also account for higher order data in the micro
price evaluation to see if these results can be further improved upon.

In section 3.6.2 it was mentioned that the mid price was used as an estimate of the
fair price in the case of a down move in the ask level. This simplifying assumption
was made since there is no apparent information about the order book after the
ask level has been conditioned to to change. A more detailed analysis could be
performed to investigate the likelihoods of different market event books after a ask
level transition has been observed. Note however that, since the transition proba-
bility tends to be small, this term has limited importance on the cost function (2.19).
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4.4 Conclusions
The results show that market events tend to be closely followed by new ones. The
type of the previous market event yields some predictability over the subsequent
order book evolution. However, the marginal utility of including this information
in the cost function is small compared to that of improving the fair value estimate
of the asset. For this, the micro-price is found to offer a substantial improvement
over the mid price, as well as the weighted mid-price. The significant improvement
in cost modeling can be capitalized on to construct trading strategies for futures
contracts in currency markets.

In further research, it would be interesting to explore how different models of market
maker behaviour can be used to infer the observations of this paper. It would also
be interesting to investigate the time it takes for the market to respond to news
events - like the ones which seem to have caused the increase in market activity
around 10:00. One could attempt to couple the level of optimism in these news
statements with the ask level transition probabilities to see if it yields some degree
of predictive power. The time between measurements was selected to be 3 min. A
rigorous examination of the best delay could be performed - potentially resulting
in better signal to noise ratios. It would also be insightful to penalize the event of
non-execution. Lastly, it would be interesting to relax the assumption of fill or kill
orders to include general limit orders. However, anonymity of the markets make it
hard to tell whether subsequent orders are market responses or simply part of the
initial traders strategy. Therefore, it may be challenging to simply utilize historical
order book data in such an investigation.
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Appendix 1

A.1 Derivation of konstant k
The condition that EFO

ti
[g(u)] = 1, where u ∼ U [0, 24) is equivalent to the condition∫ 24

0 g(x)dx = 24. Let h(x) = a1fµ1,γ1(x) + a2fµ2,γ2(x) + a3fµ3,γ3(x). The primitive
function H(x) becomes (up to a constant)

H(x) = a1Fµ1,γ1(x) + a2Fµ2,γ2(x) + a3Fµ3,γ3(x)

Fx0,γ(x) = 1
π
· arctan(x− x0

γ
) + 1

2
(A.1)

One therefore arrives at the following expression for k

24 =
∫ 24

0
g(x)dx

= 23k +
∫ 15

0
h(x)dx+ (1− c)

∫ 16

15
h(x)dx+ (1− c)

∫ 18

17
h(x)dx+

∫ 24

18
h(x)dx

= 23k + c[H(15)−H(18)] + (1− c)[H(16)−H(17)] +H(24)−H(0)

⇒ k = 24
23 −

1
23 (c[H(15)−H(18)] + (1− c)[H(16)−H(17)] +H(24)−H(0))

(A.2)

A.2 Average market activity during a time inter-
val

Assume that f0 ·g(ν) ·h(∆t) models all the variability in market activity. Moreover,
assume that 1/f0 · g(ν) · h(∆t) > T − t. In this case, one would not get any market
events in the interval [t, T ]. Therefore, no added compensation would be needed and
the function H(ν,∆t, T − t) would equal h(∆t). Stated mathematically

f0 · g(ν) ·H(ν,∆t, T − t) = f0 · g(ν) · h(∆t) , if h(∆t) ≤ 1/(T − t)g(ν)f0. (A.3)

However, if 1/f0 · g(ν) · h(∆t) < T − t, at least get one market event would occur
in the interval [t, T ]. Moreover, after this event had occurred, the market activity
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would be f0 ·g(ν) ·h(0). The average market activity during the interval [t, T ] would
therefore be

f0 · g(ν) ·H(∆t, T − t) = f0 · g(ν) · h(∆t) · t− t
T − t

+ f0 · g(ν) · h(0) · T − t
T − t

, (A.4)

where t is the time of the market event preceding t, which (under the assumption
of deterministic order frequency) can also be written on the form

t = t+ 1
f0 · g(ν) · h(∆t) . (A.5)

By simplifying the first two equations in this section one arrives at the following
estimate for H(∆t, T − t)

H(ν,∆t, T − t) =


h(∆t) , if h(∆t) ≤ x

h(0) + x(1− h(0)
h(∆t)) , if h(∆t) > x

x = 1/(T − t)g(ν)f0.

(A.6)
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A.3 Spreads

The following graphs show histograms over the spread distributions for four assets:
Austalian dollar (AD), Brittish pounds (BP), Canadian dollar (CD) and Japanese
yen (JY). Note that they rarely exceed a spread of two ticks, which is why figure
3.10 only includes compensations for spreads of 1 and 2.

Figure A.1: Histograms for the spread distributions of the four assets. Note that
BP is the most likely to have a spread of two ticks and that JY is the most likely
to have a one tick spread.

A.4 Absolute MSE plots

Many of the MSE plots in chapter 3 displayed the relative MSE compared to some
benchmark. This was done in order enhance differences between the models. The
following section contains the corresponding MSE plots, without any adjustments.

Figure A.2 shows a comparison between the different frequency models, in comparing
the number of market events during a time interval of 100 ms. The corresponding
relative MSE plot can be found in figure 3.6.
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Figure A.2: Comparison between the frequency models, in comparing the number
of market events during a 100 ms time interval.

Figure A.3 shows a comparison between the different markov models, described in
section 3.3, in predicting the probability of a transition in the ask level at the time
of the next market event. The corresponding relative MSE plot can be found in
figure 3.8.

Figure A.3: Comparison between the markov models, described in section 3.3, in
predicting the probability of a transition in the ask level at the time of the next
market event.
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Figure A.4 shows a comparison between the different markov models, described in
section 3.3. The quantity of interest is the probability of a transition in the ask
level, sometime during the following n market events. The corresponding relative
MSE plot can be found in figure 3.9. Note that, unlike in figure A.3, all of the data
associated with a particular number of market events n has been summarized into
a single point. This reduces the complexity, but it also limits insights over how the
markov models compare over time.

Figure A.4: Comparison between the markov models, described in section 3.3 on
predicting the probability of a transition in the ask level - sometime during the
following n market events. The x-axis shows the number of market events n. The
y-axis shows the MSE for the models.
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Figure A.5 shows a comparison between the compound models, in predicting the
probability of a transition in the ask level, during a time interval of 100 ms. The
benchmark model {f0, p0} was highlighted in black for illustration purposes. Figure
3.13 shows the relative MSEs for some of the key models in figure A.5.

Figure A.5: Comparison between the compound models, in predicting the proba-
bility of a transition in the ask level, during a time interval of 100 ms. The benchmark
model {f0, p0} was highlighted in black for illustration purposes.

Figure A.6 shows a comparison between all combinations of fair price estimates.
Figure 3.11 shows the associated relative MSEs, withe the {Micro,Micro}-model as
a benchmark.
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Figure A.6: comparison between all combinations of fair price estimates. The
models were compared in terms of MSEs, which were evaluated according to section
3.5.

Figure A.7 shows a comparison between the different compound models in predicting
the cost of a fill or kill limit order. Figure 3.14 shows the associated relative MSEs,
withe the naive model as a benchmark.

Figure A.7: Comparison between the different compound models in predicting the
cost of a fill or kill limit order. The models were compared in terms of their MSEs,
which were evaluated according to section 3.6.2.
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