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Token embedding and sequencing



First person navigation

Simulated Kinova Jaco arm

Outperform humans in Atari games sample efficiency & generalization

Controlling animal inspired robots

Planning

Stack blocks with real robot arm

Maintaining dialogues

Multi task learning
Generate image captions

Gato
Transformer sequence model 

with single set of weights
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Model application
General approach
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Observation

Action

AgentAgent Agent

• Trained on the widest possible variety of relevant data:
• Images
• Text
• Proprioception (info regarding movement, action, and location)
• Joint torques
• Button presses
• Other discrete and continuous observations and actions. 

• All data is serialized into a flat sequence of tokens



• Episodes are presented to the agent in order of time.

• Each timestep is presented in the order: Observations ([𝑦!:#, 𝑥!:$, 𝑧!:%]), Separator (ʹ|ʹ), Actions (𝑎!:&) 

• A sequence of tokens is the concatenation of data from T timesteps:
𝑠!:' = 𝑦!:#! , 𝑥!:$! , 𝑧!:%! , (|(, 𝑎!:&! , … , 𝑦!:#) , 𝑥!:$) , 𝑧!:%) , (|(, 𝑎!:&)

High-level tokenization
Sequencing of agent data

• Observations ([𝑦!:#, 𝑥!:$, 𝑧!:%]) are ordered according to a key, each item is sequenced as follows: 
• Text tokens (𝑦!:#) are in the same order as the raw input text (with SentencPiece encoding).
• Image patch tokens (𝑥!:$) are in raster order.
• Tensors (𝑧!:%) (such as discrete and continuous observations) are in row-major order. 

• Separator (ʹ|ʹ); a designated separator token is provided after observations.

• Actions (𝑎!:&) are tokenized as discrete or continuous values and in row-major order.

𝑎!! 𝑎!"
𝑎"!
𝑎#!

𝑎""
𝑎"#

Row-major / raster order 



Summarized state representations
Tokenization and embedding
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Mu-law encoding & vector embedding

Local position encoding 
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Action tokens 
always get same 
position encoding

Uses lookup table



Mu-law companding
Reducing dynamic range

𝜇 = 100 
𝑀 = 256

Constant denominator

𝐹(𝑥) = sgn(𝑥)
log(|𝑥|𝜇 + 1.0)
log(𝑀𝜇 + 1.0)

Preserves sign

Input signal Reduced dynamic range

• Capping to [-1, 1]
• Discretization into 1024 bins

After mu-law companding Processed signal



Image tokenization
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16 × 16 patches in raster order
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Embedded representation

Tokenized data

Final sequence

Discrete action



Converting tokenized image to embedding
ResNet architecture
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GroupNorm

GeLU

Weight

GroupNorm

GeLU

Weight

• GroupNorm normalizes data to appropriate scales,
similar to LayerNorm and InstanceNorm

• Good for distributed systems

• GeLU is an activation function. 

• Provides well defined gradient
in negative regime 

• Prevents neurons from dying 
while bounding influence of 
negative regime activations

• The weight layers are configurable with hyper parameters

• Common to use small convolutional layers 

Allows information to 
propagate directly from 
one unit to another

• Multiple layers of these units can be stacked to increase complexity

V2 ResNet architecture



2.2 Embedding input tokens and setting output targets
Patch position encodings: Input from image patches

• For image patch token embeddings, between the embedded image and mapping onto the final sequence, a learnable within-image position 
encoding vector is also added. 

• Conveys information about a patch’s global position within the image 

Width normalized to range [0, 128]
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During training, the center 
point is used: 𝑥 = 64, 𝑦 = 48

During evaluation, a random 
point in the range is used

Image sectioning Finding coordinate ranges Selecting encoding point


