
Niklas Forsstroem
forsstroemniklas@gmail.com

A Scalable Real-time Architecture for
Learning Knowledge from Unsupervised
Sensorimotor Interaction

GATO

Token embedding and sequencing

First person navigation

Simulated Kinova Jaco arm

Outperform humans in Atari games sample efficiency & generalization

Controlling animal inspired robots

Planning

Stack blocks with real robot arm

Maintaining dialogues

Multi task learning
Generate image captions

Gato
Transformer sequence model

with single set of weights

Fixed Prompt (optional)

Observation

Action

AgentAgent Agent

Model application
General approach

Fixed Prompt (optional)

Observation

Action

AgentAgent Agent

• Trained on the widest possible variety of relevant data:
• Images
• Text
• Proprioception (info regarding movement, action, and location)
• Joint torques
• Button presses
• Other discrete and continuous observations and actions.

• All data is serialized into a flat sequence of tokens

• Episodes are presented to the agent in order of time.

• Each timestep is presented in the order: Observations ([𝑦!:#, 𝑥!:$, 𝑧!:%]), Separator (ʹ|ʹ), Actions (𝑎!:&)

• A sequence of tokens is the concatenation of data from T timesteps:
𝑠!:' = 𝑦!:#! , 𝑥!:$! , 𝑧!:%! , (|(, 𝑎!:&! , … , 𝑦!:#) , 𝑥!:$) , 𝑧!:%) , (|(, 𝑎!:&)

High-level tokenization
Sequencing of agent data

• Observations ([𝑦!:#, 𝑥!:$, 𝑧!:%]) are ordered according to a key, each item is sequenced as follows:
• Text tokens (𝑦!:#) are in the same order as the raw input text (with SentencPiece encoding).
• Image patch tokens (𝑥!:$) are in raster order.
• Tensors (𝑧!:%) (such as discrete and continuous observations) are in row-major order.

• Separator (ʹ|ʹ); a designated separator token is provided after observations.

• Actions (𝑎!:&) are tokenized as discrete or continuous values and in row-major order.

𝑎!! 𝑎!"
𝑎"!
𝑎#!

𝑎""
𝑎"#

Row-major / raster order

Summarized state representations
Tokenization and embedding

Proprioception

5.9
8.4
⋮

,
8.7
2.6
⋮

,
7.6
5.3
⋮

,
4.6
3.4
⋮

Action

−0.70.3, 1.5, 0.25, −0.4

9.0
3.3
⋮

…
2.3
8.3
⋮

,
5.9
8.4
⋮

,
8.7
2.6
⋮

,
7.6
5.3
⋮

,
4.6
3.4
⋮

,
9.0
3.3
⋮

,
2.3
0.9
⋮

…

𝑓 1.5 =

Mu-law encoding & vector embedding

Local position encoding

Full sequence

ℎ
5.9
8.4
⋮

,
8.7
2.6
⋮

=
5.9
8.4
⋮

+ 𝒑𝟎,

𝑒. 𝑔. 𝒑𝟎 =
3.0
5.8
⋮

8.7
2.6
⋮

+ 𝒑𝟏

Action tokens
always get same
position encoding

Uses lookup table

Mu-law companding
Reducing dynamic range

𝜇 = 100
𝑀 = 256

Constant denominator

𝐹(𝑥) = sgn(𝑥)
log(|𝑥|𝜇 + 1.0)
log(𝑀𝜇 + 1.0)

Preserves sign

Input signal Reduced dynamic range

• Capping to [-1, 1]
• Discretization into 1024 bins

After mu-law companding Processed signal

Image tokenization

4 5 6

1 2 3

5.9
8.4
⋮

,
8.7
2.6
⋮

,
7.6
5.3
⋮

,
4.6
3.4
⋮

,
7.6
5.3
⋮

,
4.6
3.4
⋮

16 × 16 patches in raster order

−0.7

9.0
3.3
⋮

…
2.3
8.3
⋮

,
5.9
8.4
⋮

,
8.7
2.6
⋮

,
7.6
5.3
⋮

,
4.6
3.4
⋮

,
7.6
5.3
⋮

,
4.6
3.4
⋮

,
9.0
3.3
⋮

,
2.3
0.9
⋮

…

Embedded representation

Tokenized data

Final sequence

Discrete action

Converting tokenized image to embedding
ResNet architecture

5.9
8.4
⋮

𝑥3

𝑥345

+

GroupNorm

GeLU

Weight

GroupNorm

GeLU

Weight

• GroupNorm normalizes data to appropriate scales,
similar to LayerNorm and InstanceNorm

• Good for distributed systems

• GeLU is an activation function.

• Provides well defined gradient
in negative regime

• Prevents neurons from dying
while bounding influence of
negative regime activations

• The weight layers are configurable with hyper parameters

• Common to use small convolutional layers

Allows information to
propagate directly from
one unit to another

• Multiple layers of these units can be stacked to increase complexity

V2 ResNet architecture

2.2 Embedding input tokens and setting output targets
Patch position encodings: Input from image patches

• For image patch token embeddings, between the embedded image and mapping onto the final sequence, a learnable within-image position
encoding vector is also added.

• Conveys information about a patch’s global position within the image

Width normalized to range [0, 128]

He
ig

ht
 n

or
m

al
ize

d
to

 ra
ng

e
[0

, 1
28

] 𝑥 ∈ 40%, 60%
= 51.2, 76.8

𝑦
∈
25
%
,5
0%

=
32
,6
4

During training, the center
point is used: 𝑥 = 64, 𝑦 = 48

During evaluation, a random
point in the range is used

Image sectioning Finding coordinate ranges Selecting encoding point

